

SDR Driver and API options for the
LimeSDR ecosystem and beyond

Lime Microsystems| FPRF company

Guildford, Surrey, United Kingdom

Sept 2017

Introductions: Josh Blum

Projects and open-source work

● GRC – GNURadio companion
● UHD - drivers, firmware, FPGA design
● VOLK – code generation + arch selection
● Maintainer SoapySDR + Pothos
● LimeSDR crowd funding campaign
● MyriadRF packaging support
● http://www.joshknows.com/projects

Embedded Engineer Skylark Wireless

Last mile wireless broadband solutions:
Developing 5G communications hardware for
rural and other under-served communities
based on multi-user MIMO technology.

● http://www.skylarkwireless.com/

http://www.joshknows.com/projects
http://www.skylarkwireless.com/

SDR Drivers/APIs

The boring part of SDRs

● Tedious APIs and layers
● Language choices etc...
● Documentation: Whats that?
● Compilers + dependencies
● Debugging: thats fun

The good: why we do it

● A good driver encapsulates functionality in a way that
saves developer time and confusion
● Set my gain in dB and my frequency in Hz – not

register 0x24 = 0x3 << 3
● Give me samples and flags – not bit field packing

and magic offsets
● The human brain: memory allocation error

● Layers give us the ability to split problems into
manageable pieces with defined boundaries

● Code duplication? Ctrl+C, Ctrl+V, modify, repeat
● Abstraction lets us write applications once – all the

while supporting many similar devices

Soapy SDR: Motivation

A problem to solve (2014)

● I need to make a generic SDR support block

● And I want to support most/all SDR devices

● Many projects: A new SDR on the market

● Ctrl+C, Ctrl+V, modify, repeat

● Gr-osmosdr is very good, very close

● It is massive: libboost, gnuradio, volk

● No streaming API (needs gr blocks)

● Difficult stream time/burst controls

● New SDR? Ctrl+C, Ctrl+V, modify

Soapy SDR: Design considerations

Designing a framework: requirements

● Make an API that anyone can use, not application specific

● Generalized support for device enumeration, identification

● Restful API for generalized SDR settings: frequency, gain, rates, filters, sensors…

● Streaming API: read and write samples and metadata, stream status too

● Minimal dependencies for the core project

● Just a compiler and make/cmake

● Modules/plugin architecture based (decoupling)

● Load hardware support libraries at runtime

● Do not recompile framework for new hardware

● Permissive licensing for commercial and open source

Soapy SDR: Basic Features
● C++/C and python API
● Very low boilerplate

● CMake macro
● Settings, Streaming, Registration.cpp - Overload the calls you need

● Modules for most devices: RTL, HackRF, USRP, AirSpy, LimeSDR…
● SoapyRemote – use any SDR over a network
● SoapyMultiSDR – N devices, 1 handle
● SoapyOsmo – wraps gr-osmosdr hardware support without gr dependencies
● https://github.com/pothosware/SoapySDR/wiki

https://github.com/pothosware/SoapySDR/wiki

Soapy SDR: Interesting uses

Unexpected uses/idioms

● Wrap entire HW support into SoapySDR module – No C API whatsoever
● Or bundle SoapySDR module with low-level driver: LimeSuite
● Not everything is sample streams: decoded packets, bounded arrays of bytes…
● Low level APIs: registers, SPI, I2C, UART, generic settings...
● SoapyRemote, but with custom streams:Zynq FPGA and Skylark Iris hardware

Closing the loop

● Gr-osmosdr has soapy support too
● Anything SoapySDR works in GQRX, GRC, etc...

● UHDSoapy – support in UHD API
● USRPs get remote device support
● uhd_usrp_probe a RTLSDR :-)

Ecosystem of software
(*not complete (obviously (but kind of cool)))

Lime Suite: Introduction

A driver for LimeSDR + much more

● LimeSDR + other devices featuring LMS7002M
● Reusable parts for developing with LMS7002M

● LMS7002M driver: register abstraction and high level calls
● Open FPGA designs projects and matching driver support
● Mix and match custom hardware, fpga, and driver code

● Similar API for device enumeration + settings
● High level API for generic devices based on LMS7002M
● Python too: https://myriadrf.org/projects/pylms7002m/
● Automatic support for devices under SoapySDR + friends
● Device works in LimeSuite GUI for RFIC debugging

https://myriadrf.org/projects/pylms7002m/

Lime Suite: Application components

LimeSuite C API

● #include <lime/LimeSuite.h>
● Full C API 100% in limesuite
● Enumerate, stream, configure
● Also hardware specific stuff
● Low level, FPGA programming

LimeSuite GUI

● Register dumps (debugging)
● Low level and high level controls
● Enumeration, firmware flashing
● FFT viewer and Tx waveforms

Lime Suite: Custom PCB + Drivers
Plugging into LimeSuite (c++)

● lime::IConnection + lime::ConnectionRegistry
● Device enumeration, register IO, streaming
● Tell LimeSuite how to talk to LMS7002M SPI
● Tell LimeSuite how stream Rx/Tx samples
● Yeah it works! C API, LimeSuite GUI, SoapyLMS7

And reusing LimeSDR FPGA cores

● Reuse existing FPGA cores (burst+time control)
● Inherit lime::LMS64CProtocol this time
● Tell LimeSuite how to talk to LMS7002M SPI
● R/W IO streams: High level timestamp samples
● Yeah it works! C API, LimeSuite GUI, SoapyLMS7

Open Design/
Custom PCB
Open Design/
Custom PCB

Open FPGA cores/
Or custom RTL

Lime Suite: Other items of interest
pyLMS700M

● Low level API – for python
● https://myriadrf.org/projects/pylms7002m/

● VNA Example with pylms7002m
● https://myriadrf.org/blog/lms7002m-python-package-vna-example/

LMS7002M embeddable C driver

● All C driver implementation, no dependencies
● Embed into another project: static lib, or directly
● Using it at SkylarkWireless for the Iris modules
● Drop it into a kernel module or micro-controller
● https://github.com/myriadrf/LMS7002M-driver

https://myriadrf.org/projects/pylms7002m/
https://myriadrf.org/blog/lms7002m-python-package-vna-example/
https://github.com/myriadrf/LMS7002M-driver

Software packaging @ MyriadRF

● Launchpad.net PPAs
● https://launchpad.net/~myriadrf

● Ubuntu SNAP packages
● https://github.com/myriadrf/snapcraft-sandbox

● Windows installer – PothosSDR
● https://github.com/pothosware/PothosSDR/wiki

Get Involved: http://wiki.myriadrf.org/Packaging

https://launchpad.net/~myriadrf
https://github.com/myriadrf/snapcraft-sandbox
https://github.com/pothosware/PothosSDR/wiki
http://wiki.myriadrf.org/Packaging

Software packaging:
● Launchpad.net builds and hosts deb packages for Ubuntu from source
● PPAs maintained at MyriadRF:

● sudo add-apt-repository -y ppa:myriadrf/drivers
● sudo add-apt-repository -y ppa:myriadrf/gnuradio

● Recent versions of Ubuntu releases and LTS releases
● Up to date hardware drivers, soapy modules, gnuradio, gr-osmosdr, others
● Sometimes backports, sometimes development branches
● Special thanks to Alexandru Csete: http://gqrx.de/
● Volunteers to test packages, make requests, and help maintain!

But sometimes debs can be difficult...

● Mixing with libs with /usr/local
● Dependencies on older ubuntu
● Keeping up to date, rebuilding
● Mixing PPA and official sources

http://gqrx.de/

Software packaging: Ubuntu SNAPs
● SNAPs are transactional packages
● Totally contains software stacks

● Easy to install/remove
● No DLL/ABI/so hell

● Make a YAML file that tells snapcraft how to build your software stack
● All dependencies (both from apt-get and source builds)
● Desired versions/releases of specific software packages

● Get a redistributable installer file that can be installed or shared
● Or upload the .snap file for distribution through a SNAP store

● Lots of examples using LimeSuite and GNU Radio software stacks
● GUI, command line, and server style examples
● https://github.com/myriadrf/snapcraft-sandbox/blob/master/README.md

Blog: https://myriadrf.org/blog/snap-packages-limesdr/

https://github.com/myriadrf/snapcraft-sandbox/blob/master/README.md
https://myriadrf.org/blog/snap-packages-limesdr/

Software packaging: Windows - PothosSDR
● PothosSDR is an open source build environment for the SDR ecosystem

● Homepage: https://github.com/pothosware/PothosSDR/wiki
● SoapySDR, LimeSuite, Pothos, CubicSDR, GRC, GQRX and dependencies….
● CMake project with NSIS and ExternalProject_Add()

● Nearly 60 software packages, most build from source
● Installer under 80 MB – Post install boost dev, qt dev, or python based on needs

● Integrated: Installer writes registry for Python module paths,
environment vars, file extension icon and launcher association

● Custom GRC launcher for sanity checks, automatic module
installation, and icon association
● https://github.com/pothosware/gnuradio-companion-exe

● Getting setup (GNURadio):
● https://github.com/pothosware/PothosSDR/wiki/Tutorial
● https://github.com/pothosware/PothosSDR/wiki/GNURadio

https://github.com/pothosware/PothosSDR/wiki
https://github.com/pothosware/gnuradio-companion-exe
https://github.com/pothosware/PothosSDR/wiki/Tutorial
https://github.com/pothosware/PothosSDR/wiki/GNURadio

Summary
● SDR is built on diverse set of drivers and APIs churning under the hood

● SoapySDR is a cool and versatile tool for the SDR community :-)

● LimeSuite makes it easier to develop applications and hardware based on LMS7002M

● Packaging efforts for the community: PPAs, SNAPs, and Windows installers

Thanks for watching!

Questions/Comments?

