

UHD - USRP Hardware Driver

Universal Software Radio Peripheral Hardware Driver

A Brief USRP Driver History

 USRP

 Libusrp

 Libusrp-gnuradio

 Python dboard code

 C++ dboard code

 Usrp_* examples and utils

 USRP2

 Libusrp2 (linux only)

 libusrp2-gnuradio

 C dboard code in FW

 Usrp2_* examples and utils

 USRP N+1?

 N drivers isnt going to scale...

UHD Intro

 Single API for all USRP devices
 C++ based API
 All daughterboards
 Multi-channel support

 Synchronization
 Channel alignment

 Gnuradio-UHD Blocks
 Source Block, Sink Block
 Python, C++, GRC

Larger
USRP
Family

& Daughterboards

Cross Platform

 Linux, Machintosh, Windows

 Compilers

 GCC (all OS)
 Clang
 MSVC

 Cmake

 Cross platform make
 Generates native build system

 Boost

 Cross platform C++ awesome library
 ASIO, Math, Unit testing, Program options

Whats in UHD?

Device
Implementation

Specifics

Link LayerFPGA

Send/Recv Samples

Set/Get Properties

C++ API
Multi-USRP

 Find devices on system

 Instantiate device objects

 Set/get properties
 Send/receive samples

Device Properties

 Set/get gain

 Overall chain or individual elements
 Set center frequency

 Overall chain or individual elements
 Aribitrary readback w/ sensors

 Is the RF LO locked?
 Set/get device time

 Set/get sample rate

 Antenna selection

 Frontend selection

* See doxygen or <uhd/usrp/multi_usrp.hpp> for more details *

Streaming Interface

 Streaming samples

 device->send(...) and device->recv(...)
 Inherinitly multi-channel

 Vector of pointers just like gnuradio work()
 Metadata → aka sample decoration

 Timestamps, Burst flags
 Messages

 Inline messages for receive (recv call)
 Overflow, stream command error

 Async messages for transmit (recv async message call)
 Underflow, sequence error, other...

* See doxygen or <uhd/device.hpp> for more details *

Transport Layers

 USB 2.0
 USRP1
 B100

 UDP/IPv4
 USRP2
 N2XX

 Device Node
 E1XX

The USB 2.0 Transport

 480Mbps theoretical, practically 256Mbps
 8 Msps @ 32 bits per sample
 16 Msps @ 16 bits per sample

 LibUSB 1.0
 Support on all OS
 Synchronous control transfers
 Asyncrhonous bulk transfers

 Windows support via WinUSB
 http://www.libusb.org/wiki/windows_backend

The UDP/IPv4 Transport

 1 Gbps theoretical
 25 Msps @ 32 bits per sample

 Userspace socket implementation
 Berkely sockets send()/recv()
 Very portable/works everywhere
 Boost ASIO handles platform differences

UDP Socket Tweaks

 Use massive receive socket buffer (50MB)

 Kernel buffers receive data for you
 Buffer size severly limited on OSX (1MB)

 Do something with the send socket buffer

 Too big on linux, hurts performance
 Too small on windows, hurts performance

 Latency optimization

 Configure ”Interrupt Coalescing”
 Use smaller packet sizes

Every OS
is special

UDP Socket Tweaks cont...

 Bandwidth optimization

 Use jumbo frames (4096 bytes)
 Network hardware specific

 Windows transmit performance

 registry magic: FastSendDatagramThreshold
 Crappy network hardware

 Confused network switches
 Bad network drivers
 Packets > MTU size

The USRP Embedded Transport

 Special kernel module and device node
 /dev/usrp_e
 Call ioctl() for FPGA control
 DMA between FPGA and kernel

 Memory-mapped ring buffers
 1 send buffer ring
 1 recv buffer ring

 8 Msps @ 32 bits per sample

Sample Framing - VITA49

 VITA49 standard for sample framing

 Layer between samples and USB/UDP/Kernel

 Bidirectional → frames RX and TX packets

 Stream IDs, Timstamps, sequence count...

VRT / VITA49

RX/TX

GNU Radio + UHD

 Wrapped UHD functionality into gnuradio
 Source and sink blocks
 Source work() calls device->recv()
 Metadata passed via stream tags
 Sink work calls device->send()

 Handles multi-channel
 Sample alignment
 Time synchronization

GNU Radio + UHD (API)

from gnuradio import uhd

addr = uhd.device_addr()
addr[”name”] = ”Lab USRP11”

usrp = uhd.usrp_source(
device_addr = addr,
io_type = uhd.io_type.COMPLEX_FLOAT32,
num_channels = 1,

)

usrp.set_gain(10.0)

#include <gr_uhd_usrp_source.h>

uhd::device_addr_t addr;
addr[”name”] = ”Lab USRP11”;

boost::shared_ptr<uhd_usrp_source> usrp = uhd_make_usrp_source(
addr,
uhd::io_type::COMPLEX_FLOAT32,
1

);

usrp->set_gain(10.0);

 Code to the API in C++ or Python

 Data structures SWIG'd into python

 Code is basically identical

C++ API

Python API

GNU Radio + UHD (GRC)

Future Features

 Support other over-the-wire types

 16 bit samples, 8-bit maybe too
 A raw mode for custom FPGA stuff

 Calibration

 Self calibration (IQ imbalance, DC offset)
 Select full-scale power level
 ...or transmit/receive absolute power level

 Support multi-channel, non-homogenous rates

 TX stream tags to control timed bursts

Conclusion

 USRP + UHD + GNU Radio + GRC = Awesome

 Questions? Comments?

