

UHD - USRP Hardware Driver

Universal Software Radio Peripheral Hardware Driver

A Brief USRP Driver History

 USRP

 Libusrp

 Libusrp-gnuradio

 Python dboard code

 C++ dboard code

 Usrp_* examples and utils

 USRP2

 Libusrp2 (linux only)

 libusrp2-gnuradio

 C dboard code in FW

 Usrp2_* examples and utils

 USRP N+1?

 N drivers isnt going to scale...

UHD Intro

 Single API for all USRP devices
 C++ based API
 All daughterboards
 Multi-channel support

 Synchronization
 Channel alignment

 Gnuradio-UHD Blocks
 Source Block, Sink Block
 Python, C++, GRC

Larger
USRP
Family

& Daughterboards

Cross Platform

 Linux, Machintosh, Windows

 Compilers

 GCC (all OS)
 Clang
 MSVC

 Cmake

 Cross platform make
 Generates native build system

 Boost

 Cross platform C++ awesome library
 ASIO, Math, Unit testing, Program options

Whats in UHD?

Device
Implementation

Specifics

Link LayerFPGA

Send/Recv Samples

Set/Get Properties

C++ API
Multi-USRP

 Find devices on system

 Instantiate device objects

 Set/get properties
 Send/receive samples

Device Properties

 Set/get gain

 Overall chain or individual elements
 Set center frequency

 Overall chain or individual elements
 Aribitrary readback w/ sensors

 Is the RF LO locked?
 Set/get device time

 Set/get sample rate

 Antenna selection

 Frontend selection

* See doxygen or <uhd/usrp/multi_usrp.hpp> for more details *

Streaming Interface

 Streaming samples

 device->send(...) and device->recv(...)
 Inherinitly multi-channel

 Vector of pointers just like gnuradio work()
 Metadata → aka sample decoration

 Timestamps, Burst flags
 Messages

 Inline messages for receive (recv call)
 Overflow, stream command error

 Async messages for transmit (recv async message call)
 Underflow, sequence error, other...

* See doxygen or <uhd/device.hpp> for more details *

Transport Layers

 USB 2.0
 USRP1
 B100

 UDP/IPv4
 USRP2
 N2XX

 Device Node
 E1XX

The USB 2.0 Transport

 480Mbps theoretical, practically 256Mbps
 8 Msps @ 32 bits per sample
 16 Msps @ 16 bits per sample

 LibUSB 1.0
 Support on all OS
 Synchronous control transfers
 Asyncrhonous bulk transfers

 Windows support via WinUSB
 http://www.libusb.org/wiki/windows_backend

The UDP/IPv4 Transport

 1 Gbps theoretical
 25 Msps @ 32 bits per sample

 Userspace socket implementation
 Berkely sockets send()/recv()
 Very portable/works everywhere
 Boost ASIO handles platform differences

UDP Socket Tweaks

 Use massive receive socket buffer (50MB)

 Kernel buffers receive data for you
 Buffer size severly limited on OSX (1MB)

 Do something with the send socket buffer

 Too big on linux, hurts performance
 Too small on windows, hurts performance

 Latency optimization

 Configure ”Interrupt Coalescing”
 Use smaller packet sizes

Every OS
is special

UDP Socket Tweaks cont...

 Bandwidth optimization

 Use jumbo frames (4096 bytes)
 Network hardware specific

 Windows transmit performance

 registry magic: FastSendDatagramThreshold
 Crappy network hardware

 Confused network switches
 Bad network drivers
 Packets > MTU size

The USRP Embedded Transport

 Special kernel module and device node
 /dev/usrp_e
 Call ioctl() for FPGA control
 DMA between FPGA and kernel

 Memory-mapped ring buffers
 1 send buffer ring
 1 recv buffer ring

 8 Msps @ 32 bits per sample

Sample Framing - VITA49

 VITA49 standard for sample framing

 Layer between samples and USB/UDP/Kernel

 Bidirectional → frames RX and TX packets

 Stream IDs, Timstamps, sequence count...

VRT / VITA49

RX/TX

GNU Radio + UHD

 Wrapped UHD functionality into gnuradio
 Source and sink blocks
 Source work() calls device->recv()
 Metadata passed via stream tags
 Sink work calls device->send()

 Handles multi-channel
 Sample alignment
 Time synchronization

GNU Radio + UHD (API)

from gnuradio import uhd

addr = uhd.device_addr()
addr[”name”] = ”Lab USRP11”

usrp = uhd.usrp_source(
device_addr = addr,
io_type = uhd.io_type.COMPLEX_FLOAT32,
num_channels = 1,

)

usrp.set_gain(10.0)

#include <gr_uhd_usrp_source.h>

uhd::device_addr_t addr;
addr[”name”] = ”Lab USRP11”;

boost::shared_ptr<uhd_usrp_source> usrp = uhd_make_usrp_source(
addr,
uhd::io_type::COMPLEX_FLOAT32,
1

);

usrp->set_gain(10.0);

 Code to the API in C++ or Python

 Data structures SWIG'd into python

 Code is basically identical

C++ API

Python API

GNU Radio + UHD (GRC)

Future Features

 Support other over-the-wire types

 16 bit samples, 8-bit maybe too
 A raw mode for custom FPGA stuff

 Calibration

 Self calibration (IQ imbalance, DC offset)
 Select full-scale power level
 ...or transmit/receive absolute power level

 Support multi-channel, non-homogenous rates

 TX stream tags to control timed bursts

Conclusion

 USRP + UHD + GNU Radio + GRC = Awesome

 Questions? Comments?

