UHD - USRP Hardware Driver

Universal Software Radio Peripheral Hardware Driver

ettus o] | 2
T > GNU Radio
Research the gnu software radio

A Brief USRP Driver History

= USRP
= Libusrp
= Libusrp-gnuradio
= Python dboard code
= C++ dboard code

= Usrp * examples and utils
= USRP2

= Libusrp2 (linux only)

= libusrp2-gnuradio

= C dboard code in FW

= Usrp2 * examples and utils
= USRP N+1?

= N drivers isnt going to scale...

= Single API for all USRP devices

= C++ based API
= All daughterboards

0 |- Larger & Daughterboards
Multi-channel support Larger
= Synchronization Family
= Channel alignment

= Gnuradio-UHD Blocks

Ettus Research -l . USRP E100
= Source Block, Sink Block e N .
. Python’ C++’ GRC Ettus R h @ USRP N210

clock N

Cross Platform

= Linux, Machintosh, Windows
= Compilers

= GCC (all 0OS)

= Clang

= MSVC
= Cmake

= Cross platform make

= Generates native build system
= Boost

= Cross platform C++ awesome library T e

= ASIO, Math, Unit testing, Program options

Whats in UHD?

= Find devices on system

= |nstantiate device objects
= Set/get properties
= Send/receive samples

Send/Recv Samples

: Device
FPGA Link Layer Implementation MSI-:iTUAéFI)-'\!P
Specifics

Set/Get Properties

Device Properties

= Set/get gain
= QOverall chain or individual elements
= Set center frequency

= Qverall chain or individual elements
= Aribitrary readback w/ sensors

= |s the RF LO locked?
= Set/get device time

= Set/get sample rate
= Antenna selection

= Frontend selection

* See doxygen or <uhd/usrp/multi_usrp.hpp> for more details *

Streaming Interface

= Streaming samples

= device->send(...) and device->recv(...)
= |nherinitly multi-channel

= Vector of pointers just like gnuradio work()
= Metadata — aka sample decoration

= Timestamps, Burst flags
= Messages
= |nline messages for receive (recv call)

= Overflow, stream command error
= Async messages for transmit (recv async message call)

= Underflow, sequence error, other...

* See doxygen or <uhd/device.hpp> for more details *

Transport Layers

= USB 2.0

= USRP1
= B100

- UDP/IPv4

= USRP2
= N2XX

= Device Node
= E1XX

The USB 2.0 Transport
= 480Mbps theoretical, practically 256Mbps

= 8 Msps @ 32 bits per sample
= 16 Msps @ 16 bits per sample
= LibUSB 1.0

= Support on all OS
= Synchronous control transfers

= Asyncrhonous bulk transfers
= Windows support via WinUSB
= http://www.libusb.org/wiki/windows backend

The UDP/IPv4 Transport

= 1 Gbps theoretical

= 25 Msps @ 32 bits per sample
= Userspace socket implementation

= Berkely sockets send()/recv()
= Very portable/works everywhere

= Boost ASIO handles platform differences

Data Application

UDF | UDF

Transport
header | data

IF

head IF data Internet

Fr Frame data Fr

UDP Socket Tweaks

= Use massive receive socket buffer (50MB)
= Kernel buffers receive data for you
= Buffer size severly limited on OSX (1MB)
= Do something with the send socket buffer

= Too big on linux, hurts performance [.E"ery QS]
is special

= Too small on windows, hurts performance
= Latency optimization

= Configure “Interrupt Coalescing”

= Use smaller packet sizes

UDP Socket Tweaks cont...

= Bandwidth optimization

= Use jumbo frames (4096 bytes)

= Network hardware specific
= Windows transmit performance
= registry magic: FastSendDatagramThreshold
= Crappy network hardware
= Confused network switches

= Bad network drivers
= Packets > MTU size

The USRP Embedded Transport

= Special kernel module and device node

= /dev/usrp e
= Call ioctl() for FPGA control
= DMA between FPGA and kernel

= Memory-mapped ring buffers

= 1 send buffer ring
= 1 recv buffer ring

= 8 Msps @ 32 bits per sample

Sample Framing - VITA49

= VITA49 standard for sample framing

= Layer between samples and USB/UDP/Kernel <
= Bidirectional — frames RX and TX packets

RX/TX

D

= Stream IDs, Timstamps, sequence count...

31]30]29]28]27][26]25] 24 23] 22] 2120 19] 18] 17[16]15[1a[13]12]11]10] o[8 [7[6 [5[4 3[2[1] O

Header (1 Word, Mandatory)

Stream ldentifier (1 Word, Optional)

VRT / VITA49

Class Identifier (2 Words, Optional)

Integer-seconds Timestamp (1 Word, Optional)

Fractional-seconds Timestamp (2 Words, Optional)

Data Payload (Variable, Mandatory)

Trailer (1 Word, Optional)

GNU Radio + UHD

= Wrapped UHD functionality into gnuradio

= Source and sink blocks

= Source work() calls device->recv()
= Metadata passed via stream tags
= Sink work calls device->send()

= Handles multi-channel
= Sample alignment “h“#

= Time synchronization G S

GNU Radio + UHD (API)

#include <gr_uhd_usrp_source.h>

uhd::device addr_t addr;
addr[’name”] = "Lab USRP 117,

boost::shared_ptr<uhd_usrp_source> usrp = uhd_make_usrp_source(C++ API
addr,
uhd:‘io_type::COMPLEX_FLOAT32,
1

);
usrp->set_gain(10.0);

= Code to the API in C++ or Python

from gnuradio import uhd

= Data structures SWIG'd into python
addr = uhd.device_addr()

addr['name’] = "Lab USRP11" = Code is basically identical

usrp = uhd.usrp_source(
device_addr = addr,

io_type = uhd.io_type. COMPLEX_ FLOAT32, Pvthon API
num_channels = 1, y

)
usrp.set_gain(10.0)

GNU Radio + UHD (GRC)

Blocks

[Sources]

[sinks]

[Operators]

[Type Conversions]

1D: simple_uhd example
Generate Options: WX GUI WX GUI FFT Sink
Title: FFT Plot

>

>

Sample Rate: 12.5M [=

Variable UHD: USRP Source Baseband Freq: 0 >
>

>

[Stream Conwversions

ID: samp_rate Samp Rate (Sps): 12.5M -—|—."- :[P:‘:SDI;D 10 dB
Value: 12.5M Ch: Center Freq (Hz): 400M "
ChO: Gain (dB): 0 Ref Level (dB): 50
Ref Scale (p2p): 2
FFT Size: 1.024k nchroni
Refresh Rate: 30 * Properties: UHD: USRP Source

[Misc Conversions]

WX GUI Slider
1D: freq
Label: Freg (Hz)
Default Value: 400M Signal Source .
Minimum: 50M Sample Rate: 12.5M UHD: USRP Sink Parameters:
Maximum: 2G Waveform: Cosine Samp Rate (Sps): 12.5M
Converter: Float Frequency: 1k Cho: Center Freq (Hz): 400M D | uhd_usrp_source_0

Amplitude: 700m ChO: Gain (dB): 0
Offset: 0 Output Type Complex 32

Device Addr

Sync | don't sync

Clock Rate (Hz) | Default

Num Mbeoards | 1

MbO: Ref Source Default =

v

wo: subdeysoec [I
Num Channels 1 v

Samp Rate (Sps) [samp_rate

Ch0: Center Freq (Hz) [fr‘eq

cho: Gain (dB) [0

ChoO: Antenna

Cho: Bandwidth (Hz) [%

=== Welcome to GNU Radio Companion v3.4.0-352-gca86¢c6f === Documentation:

Loading: "/home/jblum/Desktop/untitled.grc”
=== Done

Showing: "/home/jblum/Desktop/untitled.grc”

Future Features

Support other over-the-wire types

= 16 bit samples, 8-bit maybe too
= A raw mode for custom FPGA stuff

Calibration

= Self calibration (IQ imbalance, DC offset)
= Select full-scale power level
= ...or transmit/receive absolute power level

Support multi-channel, non-homogenous rates

TX stream tags to control timed bursts

Conclusion

= USRP + UHD + GNU Radio + GRC = Awesome
= Questions? Comments?

