

 - http://pothosware.com/

● Interesting features

– Feedback loops
– Polymorphic streams
– Signals slots
– Remote topologies
– Live reconfiguration

● Object introspection

– Block registration
– Block descriptions

● Wrapping Gnuradio (gr-pothos)

– Buffer and executor integration
– Scanning headers and GRC XML

● Proposed changes to Gnuradio

– Factory and block registration
– Scanning and module generation
– Future Ideas for blocks + GRC

● Mention-ables

– LiquidDSP

http://pothosware.com/

Pothos – features of interest for gr-folks

● Core stuff

– Reconfiguration while running

– Feedback loops

– Signals and slot

– Polymorphic streams

– Single Block API

– Buffer forwarding

– Remote distribution

– https://github.com/pothosware/PothosCore/wiki

– https://github.com/pothosware/PothosCore/wiki/SchedulerExplained

● GUI stuff – PothosFlow

– Supports features above, etc…

– Widgets/potters are live in the graph

– Export design to JSON topology (*new*)

– Saving widget state (*new*)

– Overlay support (*new*)

– https://github.com/pothosware/PothosFlow/wiki

https://github.com/pothosware/PothosCore/wiki
https://github.com/pothosware/PothosCore/wiki/SchedulerExplained
https://github.com/pothosware/PothosFlow/wiki

Pothos – block descriptions

● Block descriptions are used for the GUI (kind of like GRC XML)

● Inline markup format that looks like doxygen (in cpp or hpp)

– Show example source
● Generated into a JSON format consumed by the GUI

● PothosLiquidDSP and gr-pothos generate the JSON

● https://github.com/pothosware/PothosCore/wiki/BlocksCodingGuide

● https://github.com/pothosware/PothosCore/wiki/BlockDescriptionMarkup

https://github.com/pothosware/PothosCore/wiki/BlocksCodingGuide
https://github.com/pothosware/PothosCore/wiki/BlockDescriptionMarkup

Pothos features – in the works – TODO

● Code generation

– Qt support for JSON topology
– Python and C++ generation

● New GUI modes

– Going headless + reconnecting
– Operate without live objects

● Better API support for block interaction

– Output stream/msg data without topology
– Access to streams outside of framework

GNU Radio bindings - gr-pothos

● Ties in with gr-buffers, msgs, and tags

● Parses all of your headers and xml files

● Generates JSON block descriptions

● Generates modules with object registration

● Show the build/generator – it has colors

● How to plug into gr? Show some code

● https://github.com/pothosware/gr-pothos/wiki

https://github.com/pothosware/gr-pothos/wiki

gr-ideas: API for buffer, tag, msg access

● It works in gr-pothos, how-about a formal API?

● Expose direct buffer, tag, msg injection and extraction

1) Pass in buffers and lengths in and out

2) Pass in input tags and input messages

3) Existing executor: run_one_iteration()

4) Look at buffer lengths consumed and produced

5) Read out/pop any produced tags and messages

● Use blocks like kernels – numpy, volk

● Enables better unit tests – in some cases

● Experiment with custom scheduling OOT

● Buffers could come from DMA/OpenCl/etc

● Or better integration with some hardware

● Finally, cleanup gr-pothos

– no special friend class

– Use the API and gr-modules

– Just make block descriptions

Feed block
resources

Execute
the block

Handle
results

● Register my_block::make function under a unique name

● Register class methods of my_block

● Generalized APIs takes vector of pmt args

– Cleanup with C++ template wrapper

– Cleanup with pythonic wrapper
● Build system generates block factory modules (automatic)

● Factory loads these modules by scanning the install path

● The precedent here is that python + swig does this….

class block
{

static block::sptr make(pmt_args…);
pmt_t call(name, pmt_args);

//make API nice with C++11 below
template<A…>
block::sptr make(const A &a…)
{

args = pmt_t(a…);
return block::make(args);

}

template<R, A…>
R call(name, const A &a…)
{

args = pmt_t(a…);
pmt r = this→call(name, args);
return pmt_to<T>(r);

}
};

gr-ideas: block factory + class registration

gr-modules
Core + OOT

gr-ideas: block factory what ifs...

● Create gr-blocks and gr-topologies only using the runtime API

– In c++, we don’t need headers for devel libs from OOT projects
– In python, we don’t need to generate or import swig bindings

● Build a topology entirely from a list of all blocks, parameters, connections

– Example: gr-util –execute-topology=my_topology.yaml
● Remote stuff

– Hey remote server: here is a JSON, run my topology
– Make blocks into transparent RPC objects (serialize pmts)

● Generalized API calls into factory blocks can be made thread-safe automatically

● Downsides...

– More complicated blocks with objects for parameters?
– Dealing with enums, do we need a string representation?

PothosLiquidDSP

● Generates block wrappers and GUI descriptions

● Need YAML files for processing cores of interest

● Official JSON wrapper for liquidDSP in the works...

● https://github.com/pothosware/PothosLiquidDSP/wiki

https://github.com/pothosware/PothosLiquidDSP/wiki

Thanks!

● https://github.com/pothosware/pothos/wiki/Support

– https://groups.google.com/d/forum/pothos-users
– https://twitter.com/pothosware
– #pothos on freenode

● Questions?

https://github.com/pothosware/pothos/wiki/Support
https://twitter.com/pothosware

