

 - http://pothosware.com/

Josh Blum presents Pothos – an open source computation
framework, complete with graphical design interface, and
companion project SoapySDR, for SDR hardware support.

http://pothosware.com/

Josh Blum - Introduction

● Doing SDR stuff for a while now...

● GNU Radio Companion – JHU SRPL 2006

● GNU Radio things (VOLK, plotters, grextras, gras)

● USRP development (FPGA/FW, UHD, gr-uhd)

● Pothosware (Framework, PothosGUI, SoapySDR)

– https://github.com/pothosware/
● Participant in LimeSDR campaign

● http://www.joshknows.com/projects

● https://github.com/guruofquality

https://github.com/pothosware/
http://www.joshknows.com/projects
https://github.com/guruofquality

Pothosware software stack

● Pothos framework - https://github.com/pothosware/pothos/wiki

– Developing processing blocks

– Connecting topologies of blocks

– Comes with block and utilities
● Pothos GUI – https://github.com/pothosware/pothos-gui/wiki

– Graphical topology design

– Connections, signals, slots

– Embedded graphical widgets
● SoapySDR - https://github.com/pothosware/SoapySDR/wiki

– Library for SDR abstraction

– C, C++, python languages

– Based around plugins

– pothos-sdr blocks
● PothosSDR windows installer - https://github.com/pothosware/PothosSDR/wiki

– Pothos framework, GUI

– SoapySDR + plugins

– GNURadio and GRC

– GQRX, CubicSDR

https://github.com/pothosware/pothos/wiki
https://github.com/pothosware/pothos-gui/wiki
https://github.com/pothosware/SoapySDR/wiki
https://github.com/pothosware/PothosSDR/wiki

Pothos framework

● Create interconnected topologies of re-usable, parameterized processing blocks to
perform useful work.

● Permissive license for open source and commercial use

● Modular design based on loadable plugins, runtime extend-able, everything is a
plugin: core data types, conversion functions, blocks...

● Writing blocks: C++11, compact style, minimal boiler plate, thread safe, available
from the plugin tree, block factory access, GUI accessible

● Topologies can connect blocks across network/process boundaries

● Support toolkits: widgets, plotters, GUI designer, general purpose, communications,
SDR, Audio, OpenCL, GNURadio

● Languages too: Python bindings, hopefully more

●Pothos framework – dive in!

● Scheduler – how it works

– Actors and message passing

– Advanced threading options

– Buffer management for streams
● The anatomy of a block

– Blocks, ports, calls

– Streams, labels, messages

– Signals and slots
● Advanced stuff

– Crossing processes/networks

– Crossing language boundaries
● Future developments...

Pothos framework - actor model

● https://github.com/pothosware/pothos/wiki/SchedulerExplained

● Actor model for concurrency

– http://en.wikipedia.org/wiki/Actor_model

● Every block is an actor

– Many functions (work, setters, allocators)

– Block's state protected from concurrency

● When to work: Stimulus event + feedback

– Activation/deactivation

– Upstream/downstream resource

– Function calls on the block

– Other conditions...

WORK

Scheduler

FEED
BACK

https://github.com/pothosware/pothos/wiki/SchedulerExplained
http://en.wikipedia.org/wiki/Actor_model

Pothos framework - threading

● Scheduler threads do the work.

● Default: each block gets its own
thread with default priority

● Or custom thread pools

– Custom affinity, priority

– Waiting: block vs spin

– Round robin through blocks

The anatomy of a block
● https://github.com/pothosware/pothos/wiki/BlocksCodingGuide

● Blocks have calls/methods, input ports, output ports

● Blocks have framework hooks (work, de/activate, buffer allocation)

● Ports can pass arbitrary messages, streams of buffers, and stream
decorations – labels

● Signals/slots – a topologically friendly way to make function calls
(think Qt)

– Signals - output ports that emit arguments to downstream
slots: this->emitSignal(“change”, 1234, ...);

– Slots – input ports that accept upstream arguments and pass
them to a block method: void myHandler(int num, ...){

– Signals + slots are regular ports and interop with messages

https://github.com/pothosware/pothos/wiki/BlocksCodingGuide

Pothos framework - streams

● Build streaming abstraction on top of Buffers and queues

● Flow backpressure is driven by limited resources

● Output ports get a buffer manager

– buffer managers can be customized for size, circular, DMA

● Input port gets a buffer accumulator

– Can also force a custom manager on upstream output port

● Cyclical/feedback topologies
● Multiple producer-single consumer
● Stream buffers become messages
● and vice-versa

Buffer managers & domains

● A custom output buffer manager replaces the output port's default buffer manager..

● An input buffer manager replaces the upstream block's buffer manager

– What if theres two upstream blocks (multi producer)?

– What if one of those upstream blocks has a custom output manager as well?

● Solution

– Ports have configurable domains – this->setupInput(0, typeid(float), “openClDomainXYZ”);

– Buffer manager hooks know this domain and can: abdicate, throw, enforce

– The Topology tries its best! When everything fails → insert a COPY block

DMA Source OpenCL Regular BlockCOPY

Custom buff In and OutCustom buff Out No complaints here!Inserted by topology

Writing a block – simple example

Class MyBlock
MyBlock::MyBlock(const int foo) {
 this->setupInput(0, typeid(float));
 this->setupOutput(“xyz”);
 this->registerCall(this, “setMode”, &MyBlock::setMode);
 this->registerCall(this, “getMode”, &MyBlock::getMode);
 this->registerSignal("valueChanged");

static Block *make(const int foo) {
 return new MyBlock(foo);

void MyBlock::setMode(const std::string &mode) {
_mode = mode;

void MyBlock::work(void) {
 auto inPort = this->input(0);
 auto inBuff = inPort->buffer().as<const float *>();
 const size_t N = inPort->elements();
 //do something with buff
 inPort->consume(N);

 //state changed? Emit a new value to connected slots
 this->emitSignal("valueChanged", _currentValue);

 //buffer of interest? Forward it as a message
 auto outPort = this->output(“xyz”);
 outPort->postMessage(inPort->buffer());

void MyBlock::activate(void) { //called when the topology is committed
 this->emitSignal("valueChanged", 0);
 _someInternalState = 0;

std::string MyBlock::getMode(void) const {
return _mode;

Register block into plugin tree
static Pothos::BlockRegistry registerMyBlock(
 "/myProject/my_block", &MyBlock::make);

Instantiate a block
auto myBlock = Pothos::BlockRegistry::make(
 "/myProject/my_block", 1234);
myBlock->callVoid(“setMode”, “MODE0”);

Writing a block – block description

● https://github.com/pothosware/pothos/wiki/BlockDescriptionMarkup

● Block descriptions are inline comments that the build parses into
JSON and bundles with the module. It shows up in the GUI:

/***
 * |PothosDoc FIR Designer
 *
 * Designer for FIR filter taps.
 * This block emits a "tapsChanged" signal upon activations,
 * and when one of the parameters is modified.
 * The "tapsChanged" signal contains an array of FIR taps,
 * and can be connected to a FIR filter's set taps method.
 *
 * |category /Filter
 * |keywords fir filter taps highpass lowpass bandpass remez
 * |alias /blocks/fir_designer
 *
 * |param type[Filter Type] The type of filter taps to generate.
 * |option [Root Raised Cosine] "ROOT_RAISED_COSINE"
 * |option [Raised Cosine] "RAISED_COSINE"
 * |option [Box-Car] "SINC"
 * |option [Maxflat] "MAXFLAT"
 * |option [Gaussian] "GAUSSIAN"
 * |option [Remez] "REMEZ"
 * |default "SINC"

https://github.com/pothosware/pothos/wiki/BlockDescriptionMarkup

The Pothos data type system

● Goal: configure remote objects, pass arbitrary data type around, support
language bindings, serialize for networking

● Pothos::Object – a container for arbitrary C++ objects (think boost::any)

– With extensible support for conversions, hashing, sorting...

● Pothos::Proxy – an abstraction for an underlying object with generic ways to
make calls, construct objects, access fields (think Python.h, jni.h)

– Looks decent in C++ myObj.call<ReturnType>(“foo”, 1234);

– Completely transparent in Python: myObj.foo(1234)

– Implementations: registered C++ classes, remote access, Python, Java

● Used internally everywhere to support generic block factories, remote
topologies, python blocks...

Custom C++ data type

● https://github.com/pothosware/pothos-demos/tree/master/custom_types

FluffySource C++
void work(void) {
 auto outPort = this->output(0);

 //setup the data
 FluffyData data(1);
 data.wiggles = "Wiggle1";

 //produce the data as a message
 outPort->postMessage(data);

FluffySink C++
void work(void) {
 auto inPort = this->input(0);

 //do we have an input message?
 if (not inPort->hasMessage()) return;

 //extract the data
 const auto msg = inPort->popMessage();
 const auto &data = msg.extract<FluffyData>();

 cout << "FluffySink: fluff=" << data.getFluff() << std::endl;
 cout << "FluffySink: wiggles=" << data.wiggles << std::endl;

FluffySource Python
def work(self):
 outPort = self.output(0)

 #setup the data
 FluffyData = self._env.findProxy("FluffyData")
 data = FluffyData(3)
 data.wiggles = "Wiggle3"

 #produce the data as a message
 outPort.postMessage(data)

FluffySink Python
def work(self):
 inPort = self.input(0)

 #do we have an input message?
 if not inPort.hasMessage(): return

 #extract the data
 data = inPort.popMessage()

 print("FluffySinkPy: fluff=%d"%data.getFluff())
 print("FluffySinkPy: wiggles=%s"%data.wiggles)

class FluffyData {
 FluffyData(const int fluff);
 int getFluff(void) const;
 std::string wiggles;

Custom Python data type

● https://github.com/pothosware/pothos-demos/tree/master/custom_types

SpikeySource C++
void work(void) {
 auto outPort = this->output(0);

 //setup the data
 auto DemoModule = _env->findProxy("DemoModule");
 auto SpikeyData = DemoModule.get("SpikeyData");
 auto data = SpikeyData(5);
 data.set("ouch", "Ouch5");

 //produce the data as a message
 outPort->postMessage(data);

SpikeySink C++
void work(void) {
 auto inPort = this->input(0);

 //do we have an input message?
 if (not inPort->hasMessage()) return;

 //extract the data
 const auto msg = inPort->popMessage();
 const auto &data = msg.extract<Pothos::Proxy>();

 cout << "SpikeySink: spike=" << data.call<int>("getSpike") << std::endl;
 cout << "SpikeySink: ouch=" << data.get<std::string>("ouch") << std::endl;

SpikeySource Python
def work(self):
 outPort = self.output(0)

 #setup the data
 data = SpikeyData(4)
 data.ouch = "Ouch4"

 #produce the data as a message
 outPort.postMessage(data)

SpikeySink Python
def work(self):
 inPort = self.input(0)

 #do we have an input message?
 if not inPort.hasMessage(): return

 #extract the data
 data = inPort.popMessage()

 print("SpikeySinkPy: spike=%d"%data.getSpike())
 print("SpikeySinkPy: ouch=%s"%data.ouch)

class SpikeyData:
 def __init__(self, spike=0):
 self._spike = spike
 def getSpike(self):
 return self._spike

Data types – remote access

 On the client: ./FluffyRemote tcp://remotehost

 Pothos::RemoteClient client(uri); – //connect to the remote server
 auto env = client.makeEnvironment("managed");

 auto FluffyDataCls = env->findProxy("FluffyData"); – //create a FluffyData on the server
 auto remoteData = FluffyDataCls(123);
 remoteData.set("wiggles", "yippee");
 std::cout << "FluffyRemote: fluff=" << remoteData.call<int>("getFluff") << std::endl;
 std::cout << "FluffyRemote: wiggles=" << remoteData.get<std::string>("wiggles") << std::endl;

 auto localData = remoteData.convert<FluffyData>(); – //get a FluffyData locally
 std::cout << "FluffyLocal: fluff=" << localData.getFluff() << std::endl;
 std::cout << "FluffyLocal: wiggles=" << localData.wiggles << std::endl;

 auto remoteData2 = env->makeProxy(localData); – //copy into a second remote object
 remoteData2.callVoid("setFluff", 987);
 std::cout << "FluffyRemote2: fluff=" << remoteData2.call<int>("getFluff") << std::endl;
 std::cout << "FluffyRemote2: wiggles=" << remoteData2.get<std::string>("wiggles") << std::endl;

 auto localEnv = Pothos::ProxyEnvironment::make("managed"); – //get a FluffyData locally as an object
 auto localData2 = localEnv->makeProxy(remoteData2.toObject());
 std::cout << "FluffyLocal2: fluff=" << localData2.call<int>("getFluff") << std::endl;
 std::cout << "FluffyLocal2: wiggles=" << localData2.get<std::string>("wiggles") << std::endl;

On the server: PothosUtil --proxy-server=""

Pothos GUI – Live Demo

● https://github.com/pothosware/pothos-gui/wiki/Tutorial

● GUI to match features in the framework

● Instantiation and connection of blocks

● Graphical widgets, connecting signals + slots

● Running the topology, live reconfiguration

● Graph pages, connection breakers, zooming...

● Affinity zones, remote stuff, view rendered topology

https://github.com/pothosware/pothos-gui/wiki/Tutorial

SoapySDR – hardware abstraction library

● https://github.com/pothosware/SoapySDR/wiki

● One API, many devices - Python, C, and C++ API

● Plugin based SDR abstraction layer

– Most devices: RTL, BladeRF, HackRF, Play, Airspy...

– SoapyRemote – transparent remote device support:
https://github.com/pothosware/SoapyRemote/wiki

– SoapyMultiSDR – many devices one device handle

– Also useful HAL for non-SDR devices
● Platforms -

– GNU Radio (gr-osmosdr support blocks)

– Pothos SDR source and sink blocks

– CubicSDR - http://cubicsdr.com/

– Rx Tools - https://github.com/rxseger/rx_tools

Support modules
RTL, BladeRF...
Remote, Multi...

SoapySDR
Application API

SDR apps +
platforms

https://github.com/pothosware/SoapySDR/wiki
https://github.com/pothosware/SoapyRemote/wiki
http://cubicsdr.com/
https://github.com/rxseger/rx_tools

SoapySDR – python bindings

● https://github.com/pothosware/SoapySDR/wiki/PythonSupport

● Get started with SDR using SoapySDR+Python

– Numpy – vectorized math

– Scipy – re-sampling, filters

– Matplotlib – plotting library

● PC can handle ~5 Msps

Demo: Capture and plot LoRa to debug decoder with RN2483 and RTLSDR -
https://github.com/myriadrf/LoRa-SDR (RN2483Capture.py)

Read From RTLSDR with Python
import SoapySDR
from SoapySDR import * #SOAPY_SDR_ constants

#setup device
sdr = SoapySDR.Device('driver=rtlsdr')
sdr.setFrequency(SOAPY_SDR_RX, 0, 868.1e6)
sdr.setSampleRate(SOAPY_SDR_RX, 0, 2*1024e3)

#setup stream
rxStream = sdr.setupStream(SOAPY_SDR_RX, SOAPY_SDR_CF32)
sdr.activateStream(rxStream) #start streaming
buff = np.array([0]*1024, np.complex64)
sr = sdr.readStream(rxStream, [buff], len(buff))
sdr.deactivateStream(rxStream) #stop streaming
sdr.closeStream(rxStream)

https://github.com/pothosware/SoapySDR/wiki/PythonSupport
https://github.com/myriadrf/LoRa-SDR

Future features, improvements

● Just in time (JIT) block registry – No one compiles any more

– Python blocks, JSON topologies, simple C++ blocks

● More blocks/core toolkits:

– Add to pothos-comms, wrap liquidDSP

– Graphical filter design widgets from Spuce -
https://github.com/audiofilter/spuce/

● UI improvements

– GUI evaluator improvements (better detection and recovery)

– GUI – dynamic block properties (overlays, almost working)

https://github.com/audiofilter/spuce/

Thanks!

● https://github.com/pothosware/pothos/wiki/Support

– https://groups.google.com/d/forum/pothos-users

– https://twitter.com/pothosware

– #pothos on freenode
● Questions?

https://github.com/pothosware/pothos/wiki/Support
https://twitter.com/pothosware

